Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Tiempo, Población y Modelos de Crecimiento

Por Gaston Cayssials (Universidad de la República – Facultad de Ciencias Económicas y de Administración)

En este trabajo se presenta un análisis de las implicaciones que tiene sobre los modelos de crecimiento estándar asumir una hipótesis alternativa al crecimiento exponencial de la población y como la forma de modelizar el tiempo puede alterar el comportamiento dinámico de estos modelos. Se estudia también una extensión (en tiempo continuo y en tiempo discreto) del modelo de crecimiento de Mankiw-RomerWeil al apartarse del supuesto estándar de la tasa de crecimiento de la población constante. Más concreta mente, se asume que esta tasa es decreciente en el tiempo y se introduce una ley general de crecimiento de la población que verifica esta característica. Con esta especificación, el modelo puede ser representado por un sistema dinámico de dimensión tres, que admite una única solución para cualquier condición inicial. Se muestra que existe un único equilibrio no trivial que es un atractor global. Además, se caracteriza a la velocidad de convergencia hacia el estado estacionario, mostrando que en este modelo la velocidad es inferior a la del modelo original de Mankiw-RomerWeil.

Fuente: SSRN