Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Approximate Solutions to Retirement Spending Problems and the Optimality of Ruin

By Faisal Habib, Huang Huaxiong & Moshe A. Milevsky (York University)
Milevsky and Huang (2011) investigated the optimal retirement spending policy for a utility-maximizing retiree facing a stochastic lifetime but assuming deterministic investment returns. They solved the problem using techniques from the calculus of variations and derived analytic expressions for the optimal spending rate and wealth depletion time under the Gompertz law of mortality. Of course, in the real world fi nancial returns are stochastic as well as lifetimes, raising the question of whether their qualitative insights and approximations are generalizable or practical.
We solve the retirement income problem when investment returns are indeed stochastic using numerical PDE methods, assuming the principles of stochastic control theory and dynamic programming. But then — and this is key — we compare the proper optimal spending rates to the analytic approach presented in Milevsky and Huang (2011) by updating the portfolio wealth inputs to current market values. Our main practical conclusion is that this simplistic approximation when calibrated properly and frequently can indeed be used as an accurate guide for rational retirement spending policy.
As a by-product of our PDE-based methodology, our results indicate that even though the wealth depletion time is no longer a certainty under stochastic returns, the expected age at which liquid wealth is exhausted (i.) takes place well before the maximum lifetime and (ii.) is also well approximated by our analytical solution.

Full Content: SSRN